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INTRODUCTION 
This Technology Explainer examines how climate models help 

scientists understand Earth’s dynamic climate system and predict 
future climate changes. These models are the primary tool scientists 
have for evaluating the effects of anthropogenic emissions on our 
climate.1 In this capacity, climate models are crucial for providing 
policymakers with the scientific evidence on which they can 
prioritize climate action and base their mitigation and adaptation 
strategies. This Technology Explainer first explores the software 
components of modeling before turning to an exploration of the 
most recent advances in the field.  

A. WHAT IS A PREDICTIVE CLIMATE MODEL? 
Similar to models used by meteorologists to generate weather 

forecasts, climate models are computational systems that use 
mathematical equations to represent Earth’s complex physical 
processes and calculate climate patterns.2 The most salient 
difference between climate and weather models, however, is their 
respective time scales. While weather models produce data on daily 
or weekly temperatures, precipitation, and other variables, climate 
models project the averages of these values over longer periods, 
typically spanning decades to centuries.3  

Climate models are predictive in their ability to simulate long-
term climate changes in forecasting prospective climate patterns. 
The ability to predict future climate conditions helps climate 
scientists understand how and to what extent anthropogenic 
greenhouse gas emissions will interact with and alter atmospheric, 
oceanic, land-surface, and sea-ice conditions.4  

I. FOUNDATIONS AND KEY CONCEPTS 
Climate models use data on temperature, pressure, and 

humidity to perform physics-based computations that capture key 
 

1 KRISTEN ST. JOHN & LAWRENCE KRISSEK, CLIMATE CHANGE: A 
GEOSCIENCE PERSPECTIVE 387 (Kristen St. John & Lawrence Krissek 
eds., 1st ed. 2025).  

2 Climate Models, NOAA CLIMATE.GOV (June 26, 2025), 
https://www.climate.gov/maps-data/climate-data-primer/predicting-
climate/climate-
models#:~:text=Climate%20models%20are%20based%20on,the%20equat
ions%20using%20powerful%20supercomputers [https://perma.cc/K8TK-
KV39].  

3 Id. 
4 Climate Modeling, GEOPHYSICAL FLUID DYNAMICS LAB’Y, 

https://www.gfdl.noaa.gov/climate-modeling/ [https://perma.cc/5VJ4-
BUDQ] (last visited Nov. 1, 2025).  
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natural processes, including the conservation of mass, energy, and 
momentum, as well as thermo-fluid dynamics, and radiative heat 
transfer.5 Each model’s collection of physics equations is solved by 
its “dynamical core.”6 Dynamical cores are code components that 
are considered the “heart” of the model due to their critical role in 
calculating the bulk of the model’s computations.7 Different models 
will include slightly different sets of these equations in their 
dynamical cores, depending on their focus.8 For example, an 
oceanic climate model might contain equations related to salinity in 
its dynamical core,9 while atmospheric models will include 
equations for gas behavior.10  

The first climate models focused solely on performing the 
aforementioned physics equations to simulate Earth’s four major 
components: the atmosphere, oceans, land surface, and sea ice. 
Modern climate models, called Earth system models (ESMs), have 
since evolved to incorporate calculations of biogeochemical cycles 
alongside traditional physics-based equations.11 Biogeochemical 
cycles represent pathways through which elements such as carbon, 
nitrogen, and phosphorus move through living and non-living 
components of Earth's systems.12 These cycles directly affect GHG 

 
5 Robert McSweeney & Zeke Hausfather, Q&A: How Do Climate 

Models Work? CARBON BRIEF (Jan. 15, 2018, 8:30 AM), 
https://www.carbonbrief.org/qa-how-do-climate-models-work/ 
[https://perma.cc/MY6K-5JSH]; Tim N. Palmer, The Physics of 
Numerical Analysis: A Climate Modeling Case Study, PHIL. 
TRANSACTIONS OF THE ROYAL SOC’Y A, MATHEMATICAL, PHYSICAL AND 
ENG’G SCI., Mar. 6, 2020, at 1, 3.  

6 Sang-Yoon Jun, Suk-Jin Choi & Baek-Min Kim, Dynamical Core in 
Atmospheric Model Does Matter in the Simulation of Arctic Climate, 45 
GEOPHYSICAL RSCH. LETTERS 2805, 2805–06 (2018), 
https://doi.org/10.1002/2018GL077478. 

7 Laura Snider, The Rise of MPAS NSF NCAR’s Next-Generation 
Atmospheric Model Garners Significant Community Interest, U.S. NAT’L 
SCI. FOUND.: UNIV. CORP. FOR ATMOSPHERIC RSCH. (June 12, 2024), 
https://news.ucar.edu/132961/rise-mpas [https://perma.cc/HPV8-RF8W].  

8 Jun et al., supra note 6.   
9 Stephanie Olson, Malte F. Jansen, Dorain S. Abbot, Itay Halevy & 

Colin Goldblatt, The Effect of Salinity on Climate and Its Implications for 
Earth’s Habitability, GEOPHYSICAL RSCH. LETTERS, May 28, 2022, at 1, 
2.  

10 Joanna D. Haigh, Climate Modelling, SERIOUS SCI. (May 18, 2018), 
https://serious-science.org/climate-modelling-2-9001 
[https://perma.cc/PSY4-USTM].  

11 NOAA CLIMATE.GOV, supra note 2.  
12 Biogeochemical Cycles, UNIV. CTR. FOR SCI. EDUC.: EARTH AS A 

SYS., https://scied.ucar.edu/learning-zone/earth-system/biogeochemical-
cycles [https://perma.cc/SH69-79BR] (last visited Nov. 16, 2025).  

https://doi.org/10.1002/2018GL077478
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concentrations and serve as critical drivers of natural feedback 
loops.13 The carbon cycle, for example, tracks the exchange and 
storage of carbon among organisms, the atmosphere, and soil,14 
providing climate scientists with insights into how human activities 
disrupt the natural carbon balance and contribute to into increased 
atmospheric carbon dioxide.15 By understanding how carbon and 
other elements are naturally stored and released, ESMs can better 
simulate climate dynamics and provide more accurate predictions.  

II. COMPUTATIONAL TECHNOLOGY 

A. MODEL ARCHITECTURE 
Several overarching climate modeling frameworks have been 

designed to allow varying granularity in model calculations and to 
place greater emphasis on specific components of Earth's climate. 
The first of which, and the one which modern climate models are 
built on, is the General Circulation Model (GCM).16 GCMs 
primarily simulate the global circulation of the atmosphere and 
oceans.17 The most complex GCMs combine oceanic and 
atmospheric models to create Atmospheric-Ocean General 
Circulation Models (AOGCMs).18 ESMs introduce greater 
complexity by building on AOGCMs, supplementing the basic 
GCM physics-based dynamical core with equations for various 

 
13 Zeke Hausfather & Richard Betts, Analysis: How ‘Carbon-Cycle 

Feedbacks’ Could Make Global Warming Worse, CARBONBRIEF (Apr. 14, 
2020), https://www.carbonbrief.org/analysis-how-carbon-cycle-feedbacks-
could-make-global-warming-worse/ [https://perma.cc/9ATE-222A].  

14 William R. Wieder, Steven D. Allison, Eric A. Davidson, Katerina 
Georgiou, Oleksandra Hararuk, Yujie He, Francesca Hopkins, Yiqi Luo, 
Matthew J. Smith, Benjamin Sulman, Katherine Todd-Brown, Ying-Ping 
Wang, Jianyang Xia & Xiaofeng Xu, Explicitly Representing Soil 
Microbial Processes in Earth System Models, 29 Glob.  Biogeochemical 
Cycles 1782, 1782 (2015), https://doi.org/10.1002/2015GB005188. 

15 For example, human combustion of fossil fuels increases 
atmospheric carbon dioxide, driving rising temperatures. Increased 
temperatures accelerate the rate of permafrost melting, which releases 
stored carbon into the atmosphere, further intensifying warming and 
continuing the cycle.   

16 Leo Hickman, Timeline: The History of Climate Modelling, 
CARBONBRIEF (Jan. 16, 2018, 8:00 AM), 
https://www.carbonbrief.org/timeline-history-climate-modelling/ 
[https://perma.cc/CSG9-XN8Z].  

17 GEOPHYSICAL FLUID DYNAMICS LAB’Y, supra note 4. 
18 Id.   

https://doi.org/10.1002/2015GB005188
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biological and chemical processes.19 Because modern climate 
models build on earlier frameworks, understanding how the base 
model functions provides valuable context for understanding state-
of-the-art models used today.  

i. General Circulation Model 
General circulation models (GCMs) are computer systems that 

simulate atmospheric and oceanic processes to predict how the 
climate may respond to human activity.20 Scientists input historical 
climate data for specific variables such as temperature, pressure, 
precipitation, and humidity,21 which the model processes through 
its dynamical core of equations. The model then produces variable 
outputs for a defined time span, ranging from days to centuries.22  

To run GCMs, the input data must first be discretized into data 
points. GCMs do so by defining variables spatially on a three-
dimensional grid of Earth’s surface and atmosphere, where each 
grid cell represents a singular computational unit.23 The atmosphere 
is divided into discrete layers (e.g., 20-40 layers) to approximate 
interactions across varying altitudes, which are overlaid with a two-
dimensional horizontal grid, spanning around 100-200 kilometers.24 
Differences between climate models often derive from variation in 
the size and number of cells in the models’ three-dimensional grid. 
The smaller and more numerous the cells of a model’s grid are, the 
higher its “spatial resolution.”25 While GCMs typically have spatial 
resolutions of hundreds of kilometers,26 scientists can use 

 
19 GFDL Earth System Models, GEOPHYSICAL FLUID DYNAMICS 

LAB’Y, https://www.gfdl.noaa.gov/earth-system-models/ 
[https://perma.cc/BX92-KU8D] (last visited Nov. 16, 2025).  

20 NOAA CLIMATE.GOV, supra note 2.  
21 GEOPHYSICAL FLUID DYNAMICS LAB’Y, supra note 4; McSweeney 

& Hausfather, supra note 5.  
22 Id.   
23 Grid, SWEDISH METEOROLOGICAL HYDROLOGICAL INST., 

https://climateinformation.org/about/ [https://perma.cc/KZ3S-B6QV].  
24 DAVID C. BADER, CURT COVEY, WILLIAM J. GUTOWSKI, ISAAC M. 

HELD, KENNETH E. KUNKEL, RONALD L. MILLER, ROBIN T. TOKMAKIAN 
& MINGHUA H. ZHANG, CLIMATE MODELS: AN ASSESSMENT OF 
STRENGTHS AND LIMITATIONS 14 (Judy Wyrick & Anne Adamson, eds., 
2008).  

25 GEOPHYSICAL FLUID DYNAMICS LAB’Y, supra note 4.  
26 SUZANNA CLARK, HEIDI ROOP, NATHAN MEYER, STEFAN LIESS, 

JAMIE MOSEL, BRENDA HOPPE & AMANDA FARRIS, CLIMATE MODELING: 
AN INTRODUCTORY PRIMER FOR PRACTITIONERS 9 (1st ed. 2023).  
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contemporary downscaling techniques to produce higher-resolution 
outputs.27  

Using the discretized data, GCMs apply the dynamical core 
equations to each cell to produce output values indicating how 
specified variables have changed over time. Because the 
atmosphere and oceans are highly dynamic, calculations on 
individual grid cells alone cannot fully capture their evolving 
interactions.28 To account for the natural exchange of matter, heat, 
and energy from one particle to another, the results from each cell 
are passed to its neighbors, which are then factored into their 
calculations.29 This process is broken into discrete time periods, 
known as “time steps,” that represent the model’s “temporal 
resolution.”30 As with spatial resolution, the smaller and more 
frequent the time steps, the higher the temporal resolution. A 
singular time step is typically defined as one run of the dynamical 
core equations through each cell.31 The model uses the information 
calculated in the first time step as input to the second.32 Running 
each equation for each cell at each time step is computationally 
demanding, and this burden increases with higher resolution.33 For 
example, a model attempting a century-long simulation with 1-hour 
time steps would require 876,000 time steps.34 For a model with 
thousands to millions of grid cells, in which dozens of equations are 
run, it can require solving billions to trillions of equations.35  

While the majority of the model’s equations are expressed in 
the dynamical core, for processes that are either too complex, too 
small-scale, or not sufficiently understood to be accurately 
simulated at each grid cell, simplified approximations that represent 
their average effects are used by the model instead.36 These 
physical “parameterizations” often account for physical parameters 
that would require a significant amount of the computer’s 
processing time, memory, and power if solved out in their 

 
27 Catherine M. Cooney, Downscaling Climate Models: Sharpening 

the Focus on Local-Level Changes, 120 ENV’T HEALTH PERSP. 22, 24 
(2012), https://doi.org/10.1289/ehp.120-a22. 

28 NOAA CLIMATE.GOV, supra note 2. 
29 Id.  
30 Id.  
31 S. CLARK ET AL., CLIMATE MODELING: AN INTRODUCTORY PRIMER 

FOR PRACTITIONERS 5 (1st ed. 2023); SUZANNA CLARK ET AL., supra note 
26.  

32 Id.  
33 Id.  
34 Id. at 8.  
35 Id.  
36 GEOPHYSICAL FLUID DYNAMICS LAB’Y, supra note 4. 
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entirety.37 Just as 3.14 is commonly used as a practical 
approximation for 𝜋, which allows for easier calculations, 
simplifying parameters though approximation can make equations 
more manageable and less time-consuming for models to compute.  

ii. Earth Systems Model and Coupled Models 
ESMs are coupled models that combine multiple stand-alone 

models into a single framework.38 Stand-alone models are designed 
to accurately simulate only one of Earth’s four major components, 
either atmosphere, oceans, land surface, or sea ice, in isolation.39 
Coupled models aim to unite stand-alone models into a single 
system to inform internal calculations more effectively and improve 
accuracy.40 Like specialized organs that function individually but 
combine to form the human body, coupled models leverage the 
specialized capabilities of individual models and combine them to 
create a model better equipped to simulate complex and dynamic 
interactions. To achieve this, a software component known as a 
"coupler" helps to manage information transfers among models.41 
The coupler receives variable data from one model and, through 
interpolation into another grid, converts its units into a readable 
input for another model’s use.42  

B. CALIBRATION AND VALIDATION TECHNIQUES 
A standard part of operating a climate model includes 

validating its predictions and calibrating it accordingly. Climate 
scientists can test a model’s predictive power by feeding it past 
climate data, of which the outcomes are known.43 The model’s 
predictions are then compared with real-world data. Any 
discrepancy between the model’s predictions and the historical data 

 
37 Omar M. M. Nofal, Omar Al-Jaghbeer, Zaid Bakri & Tareq 

Hussein, A Simple Parameterization to Enhance the Computational Time 
in the Three Layer Dry Deposition Model for Smooth Surfaces, 
ATMOSPHERE, July 27, 2022, at 1, 1–2, 
https://doi.org/10.3390/atmos13081190. 

38 Sophie Valcke, The OASIS3 Coupler: A European Climate 
Modelling Community Software, 6 GEOSCIENCE MODEL DEV. 373, 373–74 
(2013), https://doi.org/10.5194/gmd-6-373-2013, 2013.  

39 Id.   
40 Id.  
41 Sophie Valcke, V. Balaji, A. Craig, C. DeLuca, R. Dunlap, R. W. 

Ford, R. Jacob, J. Larson, R. O'Kuinghttons, G. D. Riley & M. 
Vertenstein., Coupling Technologies for Earth System Modelling, 5 
GEOSCIENCE MODEL DEV. 1589, 1589 (2012), 
https://doi.org/10.5194/gmd-5-1589-2012. 

42 Id.  
43McSweeney & Hausfather, supra note 5. 
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is addressed in a calibration period.44 Calibration can take many 
forms, all of which involve adjusting the model’s parameters to 
better fit the historical data.45 Through either statistical analysis or 
expertise,46 scientists can identify uncertain parameters (often the 
same parameters included in parameterizations) that, if adjusted, 
provide a better match to historical data. The internal parameters 
are adjusted in the model’s code until the model’s output aligns 
with the actual data.    

C. SUPERCOMPUTING 
Given the processing power required to analyze vast datasets 

and perform numerous complex computations necessary to model 
climate change, supercomputing is an essential component of 
climate modeling.47 As their name suggests, supercomputers are 
high-performance computers designed to handle complex 
calculations efficiently.48 Supercomputers work by dividing data-
intensive problems among their smaller parts called “nodes.”49 
Each node acts as a smaller computer with its own memory and 
processors,50 allowing it to perform separate data analysis. What 
enables the supercomputer to be so powerful is its ability for 
“parallel processing,” or connecting and facilitating communication 
among all its nodes on its high-speed network.51 This enables the 
simultaneous resolution of smaller components across multiple 
tasks, resulting in a significantly reduced processing time for the 
larger project. 

 
44 Id.   
45 Juliane Mai, Ten Strategies Towards Successful Calibration of 

Environmental Models, 620 J. HYDROLOGY (SPECIAL ISSUE) 1 (2023), 
https://doi.org/10.1016/j.jhydrol.2023.129414.   

46 James M. Murphy, David M. H. Sexton, David N. Barnett, Gareth 
S. Jones, Mark J. Webb, Matthew Collins & David A. Stainforth 
Quantification of Modelling Uncertainties in a Large Ensemble of Climate 
Change Simulations, 430 NATURE 768, 769 (2004), 
https://doi.org/10.1038/nature02771; McSweeney & Hausfather, supra 
note 5.  

47 McSweeney & Hausfather, supra note 5.  
48 What is Supercomputing?, INT’L BUS. MACH., 

https://www.ibm.com/think/topics/supercomputing 
[https://perma.cc/9HPQ-WFDJ] (last visited Nov. 2, 2025).  

49 Id.  
50 Id.  
51 Id.  

https://pubmed.ncbi.nlm.nih.gov/?term=Sexton+DM&cauthor_id=15306806
https://pubmed.ncbi.nlm.nih.gov/?term=Stainforth+DA&cauthor_id=15306806
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III. INNOVATIONS AND DEVELOPMENTS 
Recent years have seen significant innovation in climate 

modeling, primarily driven by the increased use of artificial 
intelligence (AI) and machine learning (ML).52 AI-driven modeling 
enables faster and more efficient computation, higher-resolution 
projections, and more accurate predictions of extreme weather 
events.53 While traditional models have struggled to provide 
resolution at the level necessary to capture regional and local 
climate variations, AI models improve modular spatial resolution, 
creating predictive data more relevant to local decision-makers.54 

A. ARTIFICIAL INTELLIGENCE DRIVE MODELING 
A surge in AI integration has transformed the field, 

significantly addressing or resolving limitations of previous 
models.55 While AI-based models have limitations, ongoing 
advancements in AI technology enable them to continually adapt, 
offering greater efficiency at significantly lower computational 
costs.56 This reduction in computational cost stems from the AI’s 
ability to shortcut complex computations by leveraging its 
statistical learning capabilities,57 significantly reducing time 
required to simulate without compromising accuracy and, in some 
cases, even improving it.58 

 
52 For the purposes of this Explainer, artificial intelligence and 

machine learning are treated as synonymous terms although they are 
distinct and nuanced concepts. Machine learning is a specific method of 
learning from data which is practiced by machines capable of artificial 
intelligence.  

53 Carissa Wong, How AI Is Improving Climate Forecasts, 628 
NATURE 710, 711–12 (2024) (describing the ACE AI model), 
https://doi.org/10.1038/d41586-024-00780-8. 

54 Climate Model Downscaling, EPRI: CLIMATE DATA USER GUIDE, 
https://apps.epri.com/climate-data-user-guide/en/climate-model-
downscaling.html [https://perma.cc/L38U-FJ8M] (last visited Nov. 2, 
2025).  

55 Kingsley Ukoba, Predictive Modeling of Climate Change Impacts 
Using Artificial Intelligence: A Review for Equitable Governance and 
Sustainable Outcome, 32 ENV’T SCI. & POLLUTION RSCH. 10705, 10706 
(2025), https://doi.org/doi: 10.1007/s11356-025-36356-w. 

56 Wong, supra note 53.  
57 Id. at 711.  
58 Neeta Nandgude, T.P. Singh, Sachin Nandgude & Mukesh Tiwari, 

Drought Prediction: A Comprehensive Review of Different Drought 
Prediction Models and Adopted Technologies, SUSTAINABILITY (SPECIAL 
ISSUE) 1 (2023) (finding that machine learning models outperformed 
traditional models in improved drought prediction accuracy), 
https://doi.org/10.3390/su151511684.  

https://doi.org/10.1038/d41586-024-00780-8
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Rather than performing the time-intensive calculations done by 
traditional models, AI-driven models use their ability to recognize 
patterns to learn the statistical relationships between variables, 
equations, and output data. To establish this knowledge base, AI 
models are first trained using data from traditional models.59 
Training an AI model involves running calculations on input data 
and continuously adjusting the model’s parameters until it produces 
the desired output.60 After a model is trained, it can enter a post-
training phase during which it is fine-tuned on a specific subset of 
data to accomplish a target task (e.g., medium-range weather 
forecasting at a particular resolution).61  

There are three primary approaches to incorporating ML into 
climate models: emulator models, foundation models, and hybrid 
models.62 An emulator model is an AI model trained solely to 
replicate the input-output behavior of another model.63 Because the 
AI model is trained only on data from a single model, it is limited 
in its predictive abilities by that model. However, for the limited 
purpose of increasing efficiency and reducing uncertainty 
associated with a specific traditional model, emulators are 
particularly useful.64 A foundation model also capitalizes on AI’s 
ability to recognize patterns but does so on a much larger dataset.65 
Compared with emulator models, foundational models are trained 
on multiple models and millions of hours of geophysical data to 
build a more robust model capable of more independent climate 
modeling.66   

The third approach to AI modeling is a hybrid model that 
combines the strengths of traditional models with ML's 

 
59 Wong, supra note 53 (describing the training of AI models using 

traditional model’s projections). 
60 Ukoba, supra note 55 at 10710.  
61 Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu & 

Qi Tian, Accurate Medium-Range Global Weather Forecasting with 3D 
Neural Networks, 619 NATURE 533, 533 (2023), 
https://doi.org/10.1038/s41586-023-06185-3. 

62 Carissa Wong, supra note 53.  
63 Id.  
64 Id.   
65 Id.   
66 Cristian Bodnar, Wessel P. Bruinsma, Ana Lucic, Megan Stanley, 

Anna Allen, Johannes Brandstetter, Patrick Garvan, Maik Riechert, 
Jonathan A. Weyn, Haiyu Dong, Jayesh K. Gupta, Kit Thambiratnam, 
Alexander T. Archibald, Chun-Chieh Wu, Elizabeth Heider, Max Welling, 
Richard E. Turner & Paris Perdikaris, A Foundation Model for the Earth 
System, 641 NATURE 1180, 1180 (2025), https://doi.org/10.1038/s41586-
025-09005-y. 
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computational efficiency and pattern recognition.67 Predictions 
from the traditional model can serve as input to the ML-based 
model for its statistical analyses. Some hybrid models operate 
entirely on their own, independent of the traditional model they 
were trained on.68 Other “coupled” hybrid structures allow the AI 
model to run in parallel with the traditional model.69 Sometimes 
this is done by replacing or supplementing specific components of 
the physical model with an AI model.70 Most often, 
parameterizations are replaced by ML models that better capture 
these complex relationships.71 Rather than calculating the majority 
of the sophisticated mathematical equations that represent these 
parameterizations, the ML model conducts statistical analysis of the 
data to predict the most likely output from the patterns it observes.  

B. REGIONAL PROJECTIONS 
Producing higher-resolution models that allow for more 

detailed regional or local climate analysis requires creating a model 
capable of running its dynamical core equations on a much larger 
set of small grid cells, sometimes as small as couple kilometers.72 
While traditional models have achieved resolution close to that of 
AI models,73 the computational energy required to achieve such 

 
67 Wong, supra note 53, at 712.  
68 Louise J. Slater, Louise Arnal, Marie-Amélie Boucher, Annie Y.-Y. 

Chang, Simon Moulds, Conor Murphy, Grey Nearing, Guy Shalev, 
Chaopeng Shen, Linda Speight, Gabriele Villarini, Robert L. Wilby, 
Andrew Wood & Massimiliano Zappa, Hybrid Forecasting: Blending 
Climate Predictions with AI Models, 27 HYDROLOGY & EARTH SYS. SCI. 
1865, 1865–68 (2023), https://doi.org/10.5194/hess-27-1865-2023.  

69 Id.  
70 Id.   
71 Paul A. O’Gorman & John G. Dwyer, Using Machine Learning to 

Parameterize Moist Convection: Potential for Modeling of Climate, 
Climate Change, and Extreme Events, 10 J. ADVANCES IN MODELING 
EARTH SYS. 2548, 2548 (2018), https://doi.org/10.1029/2018MS001351. 

72 Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, 
Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, 
Christian L. E. Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, 
Songyee Hong, Dae-Won Kim, Nikolay Koldunov, June-Yi Lee, Zihao 
Lin, Chao Liu, Svetlana N. Loza, Wonsun Park, Woncheol Roh, Dmitry 
V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. 
Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung & 
Axel Timmermann, Earth’s Future Climate and its Variability Simulated 
at 9 km Global Resolution, 16 EARTH SYS. DYNAMICS 1103, 1103–04 
(2025) (simulating climate change on the scale of nine kilometers of 
atmosphere and four to twenty-five kilometers in the ocean), 
https://doi.org/10.5194/esd-16-1103-2025. 

73 Id.    
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high resolution over longer time periods comes with significant 
computational costs.74 AI-driven models overcome this by 
downscaling traditional models or converting coarse-resolution data 
into higher resolution. ML models downscale traditional models 
using their ability to perform pattern recognition to bypass the 
computationally intensive equations that drive traditional 
modeling.75 The ML model learns the statistical relationship 
between larger-scale data (from conventional models like GCMs) 
and smaller-scale data inputs (observed local climate) and uses this 
relationship to generate smaller-scale projections relevant to local 
climate planning.76  

IV. STRENGTHS AND LIMITATIONS 

A. STRENGTHS AND USE CASES 
ML models and coupled ESMs represent the state-of-the-art 

technology available to climate scientists today. These advanced 
modeling approaches enable scientists to project future climate 
trends with greater accuracy and granularity, allowing for 
simulations at regional and local scales. Climate models have been 
particularly instrumental in the development of climate attribution 
science, a field that aims to attribute historical and current 
greenhouse gas emissions to specific sources.77 Recent innovations 
have enabled the attribution of emissions and extreme events at the 
level of individual corporations or, in some cases, individuals.78 
Additionally, by developing more sophisticated projections, these 
models play a critical role in guiding policymakers as they develop 
strategies to mitigate and adapt to climate change.   
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B. LIMITATIONS 
While integrating ML into climate change modeling has helped 

overcome some technical limitations, challenges remain. Chief 
among these is the inability of models to fully represent Earth’s 
complex systems, thereby preventing a wholly comprehensive 
understanding of the climate. Although AI-driven models can 
address some uncertainties, including parameterizations, 
approximations, and scenario reduction imposed by the 
computational limitations of traditional models, uncertainty as a 
whole cannot be completely expunged from these models. ML 
itself introduces inherent uncertainties due to its use of statistical 
analysis rather than directly solving the underlying physics 
equations. Questions remain whether AI models can accurately 
account for natural variation and complex feedback loops that often 
accompany these highly sophisticated, not fully understood, 
physical processes. Additionally, environmental concerns over AI 
data centers’ water usage and greenhouse gas emissions place 
another limitation on their usefulness as an environmental tool.79  
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